One of the major capacity boosters for 5G networks is the deployment of ultra-dense heterogeneous networks (UDHNs). However, this deployment results in tremendousincrease in the energy consumption of the network due to the large number of base stations (BSs) involved. In addition to enhanced capacity, 5G networks must also be energy efficient for it to be economically viable and environmentally friendly. Dynamic cell switching is a very common way of reducing the total energy consumption of the network but most of the proposed methods are computationally demanding which makes them unsuitable for application in ultra-dense network deployment with massive number of BSs. To tackle this problem, we propose a lightweight cell switching scheme also known as Threshold-based Hybrid cEllswItching Scheme (THESIS) for energy optimization in UDHNs. The developed approach combines the benefits of clustering and exhaustive search (ES) algorithm to produce a solution whose optimality is close to that of the ES (which is guaranteed tobe optimal), but is computationally more efficient than ES and as such can be applied for cell switching in real networks even when their dimension is large. The performance evaluation shows that the THESIS produces a significant reduction in the energy consumption of the UDHN and is able to reduce the complexity of finding a near-optimal solution from exponential to polynomial complexity.


翻译:5G网络的主要能力增强器之一是部署超常混合网络(UDHNs),但这一部署导致网络的能源消耗因所涉基础站数量众多而大幅增加。除了提高能力外,5G网络还必须具有能源效率,才能使其在经济上可行和环保。动态细胞转换是降低网络总能源消耗的一个非常常见的方法,但大多数拟议方法都是计算上的要求,使得这些网络不适合在使用大量BS的超常网络部署中应用。为解决这一问题,我们建议采用一个轻量细胞转换计划,也称为基于门槛的混合电动转换计划(HEPSIS),以优化UDHNs的能源。发达的方法结合了集群和彻底搜索(ES)算法的好处,以产生一种解决办法,其最佳性接近于ES(保证最佳),但计算上比ES效率更高,而且即使在实际网络的尺寸较大时,也可将其用于转换。我们提议,为了在UDHSIS实现快速的能源消耗量减少,而绩效评估显示,从UDIS的复杂度从接近于UDSA,其快速的解决方案能够使UDIS的能量减少。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
28+阅读 · 2020年7月13日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
已删除
将门创投
6+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
13+阅读 · 2021年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
28+阅读 · 2020年7月13日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
已删除
将门创投
6+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员