The purpose of an argumentative text is to support a certain conclusion. Yet, they are often omitted, expecting readers to infer them rather. While appropriate when reading an individual text, this rhetorical device limits accessibility when browsing many texts (e.g., on a search engine or on social media). In these scenarios, an explicit conclusion makes for a good candidate summary of an argumentative text. This is especially true if the conclusion is informative, emphasizing specific concepts from the text. With this paper we introduce the task of generating informative conclusions: First, Webis-ConcluGen-21 is compiled, a large-scale corpus of 136,996 samples of argumentative texts and their conclusions. Second, two paradigms for conclusion generation are investigated; one extractive, the other abstractive in nature. The latter exploits argumentative knowledge that augment the data via control codes and finetuning the BART model on several subsets of the corpus. Third, insights are provided into the suitability of our corpus for the task, the differences between the two generation paradigms, the trade-off between informativeness and conciseness, and the impact of encoding argumentative knowledge. The corpus, code, and the trained models are publicly available.
翻译:争论文本的目的是为了支持某种结论。然而,它们常常被忽略,希望读者能够比较推理它们。虽然在阅读单个文本时是适当的,但这种口头装置在浏览许多文本(例如搜索引擎或社交媒体)时限制了无障碍性。在这些情景中,一个明确的结论为辩论文本提供了一个很好的候选摘要。如果结论是信息性的,强调文本中的具体概念,这尤其正确。在本文中我们介绍了得出信息性结论的任务:首先,Webis-ConcluGen-21汇编成一个有136,996个争论文本及其结论的大规模样本。第二,对结论生成的两个范例进行了调查;一个是采掘性,另一个是抽象性,后者利用通过控制代码和对BART模型的几小类内容进行微调而增加数据的争论性知识。第三,对我们的材料对任务是否适合性提供了深刻的见解,两代模式之间的差异,信息性与简洁性之间的交易,以及理论性知识的影响。骨质、代码和经过培训的模型是公开的。