http://www.math.arizona.edu/∼hzhang/math574.html

随着信息技术的飞速发展,在各个领域产生了大量的科学和商业数据。例如,人类基因组数据库项目已经收集了千兆字节的人类遗传密码数据。万维网提供了另一个例子,它拥有由数百万人使用的文本和多媒体信息组成的数十亿Web页面。

本课程涵盖了现代数据科学技术,包括基本的统计学习理论及其应用。将介绍各种数据挖掘方法、算法和软件工具,重点在概念和计算方面。将涵盖生物信息学、基因组学、文本挖掘、社交网络等方面的应用。

本课程着重于现代机器学习的统计分析、方法论和理论。它是为学生谁想要实践先进的机器学习工具和算法,也了解理论原理和统计性质的算法。主题包括回归、分类、聚类、降维和高维分析。

成为VIP会员查看完整内容
0
40

相关内容

现代人工智能(AI)系统通常需要在一个未知的、不确定的、可能敌对的环境中,通过积极地与环境交互来收集相关数据,从而做出连续的决策。强化学习(RL)是一个通用框架,可以捕获交互式学习设置,并已被用于设计智能代理,以实现超人水平的表现,在具有挑战性的任务,如围棋,电脑游戏,机器人操作。

这门研究生水平的课程着重于强化学习的理论和算法基础。本课程的四个主题为: (1)可证明有效的探索; (2)策略优化(特别是策略梯度); (3)控制; (4)模仿学习。

通过本课程,学生将能够理解经典的和最新的可证明正确的RL算法及其分析。学生将能够对与RL相关的课题进行研究。

成为VIP会员查看完整内容
0
42

专注于识别和解决应用中出现的凸优化问题。凸集、函数和优化问题。凸分析基础。最小二乘、线性和二次规划、半定规划、极大极小、极值体积等问题。最优性条件,对偶理论,备选定理,及应用。内点法。应用于信号处理,统计和机器学习,控制和机械工程,数字和模拟电路设计,和金融。

  • 为学生提供识别应用中出现的凸型优化问题的工具和训练
  • 提出这类问题的基本理论,集中讨论对计算有用的结果
  • 让学生对这类问题的解决方法有全面的了解,并有一定的解题经验
  • 给学生在他们自己的研究工作或应用中使用这些方法所需的背景知识

http://web.stanford.edu/class/ee364a/index.html

成为VIP会员查看完整内容
0
58

机器学习有很多名称,如机器学习、人工智能、模式识别、数据挖掘、数据同化和大数据等等。它在许多科学领域都有发展,比如物理学、工程学、计算机科学和数学。例如,它被用于垃圾邮件过滤、光学字符识别(OCR)、搜索引擎、计算机视觉、自然语言处理(NLP)、广告、欺诈检测、机器人技术、数据预测、材料发现、天文学。这使得有时在文献中很难找到一个特定问题的解决方案,仅仅是因为不同的单词和短语用于同一个概念。

这本书旨在缓解这一问题。一个共同的概念,但已知在几个学科不同的名称,是描述使用数学作为共同的语言。读者会发现索引对他们所知的特定主题有用。该索引是全面的,使它很容易找到所需的信息。希望这本书能成为有用的参考书,并成为任何使用机器学习技术的人书架上的必备品

这本书的重点是为什么——只有当一个算法是成功的被理解的时候,它才能被正确的应用,并且结果是可信的。算法经常被并排讲授,却没有显示出它们之间的异同。这本书解决了共性,并旨在给一个彻底和深入的处理和发展直觉,同时保持简洁。

对于任何使用机器学习技术的人来说,这本有用的参考书应该是必备的。

课件:

成为VIP会员查看完整内容
0
175

本文为大家带来了一份斯坦福大学的最新课程CS234——强化学习,主讲人是斯坦福大学Emma Brunskill,她是斯坦福大学计算机科学助理教授,任职斯坦福大学人类影响力实验室、斯坦福人工智能实验室以及统计机器学习小组,主要研究强化学习。要实现人工智能的梦想和影响,需要能够学会做出正确决策的自主系统。强化学习是这样做的一个强有力的范例,它与大量的任务相关,包括机器人、游戏、消费者建模和医疗保健。本课程通过讲课、书面作业和编码作业的结合,学生将精通强化学习的关键思想和技术。

1.课程介绍(Description)

要实现人工智能的梦想和影响,需要能够学会做出正确决策的自主系统。强化学习是这样做的一个强有力的范例,它与大量的任务相关,包括机器人、游戏、消费者建模和医疗保健。本课程将为强化学习领域提供扎实的介绍,学生将学习包括通用化和探索在内的核心挑战和方法。通过讲课、书面作业和编码作业的结合,学生将精通强化学习的关键思想和技术。作业将包括强化学习和深度强化学习的基础,这是一个极有前途的新领域,将深度学习技术与强化学习相结合。此外,学生将通过期末专题来增进对强化学习领域的理解。

课程地址:

https://web.stanford.edu/class/cs234/schedule.html

2.预备知识(Prerequisites)

1)熟练Python

所有的课程都将使用Python(使用numpy和Tensorflow,也可以使用Keras)。这里有一个针对那些不太熟悉Python的人的教程。如果你有很多使用不同语言(如C/ c++ / Matlab/ Javascript)的编程经验,可能会很好。

2)大学微积分,线性代数(如 MATH 51, CME 100)

你应该能够熟练地进行(多变量)求导,理解矩阵/向量符号和运算。

3)基本概率及统计(例如CS 109 或同等课程)

你应该了解基本的概率,高斯分布,均值,标准差等。

4)机器学习基础

我们将阐述成本函数,求导数,用梯度下降法进行优化。CS 221或CS 229均可涵盖此背景。使用一些凸优化知识,一些优化技巧将更加直观。

3.主讲:Emma Brunskill

Emma Brunskill是斯坦福大学计算机科学助理教授,任职斯坦福大学人类影响力实验室、斯坦福人工智能实验室以及统计机器学习小组。

主要研究强化学习系统,以帮助人们更好地生活。并处理一些关键技术。最近的研究重点包括:1)有效强化学习的基础。一个关键的挑战是要了解代理商如何平衡勘探与开发之间的局限性。2)如果要进行顺序决策,该怎么办。利用巨大数量的数据来改善在医疗保健,教育,维护和许多其他应用程序中做出的决策,这是一个巨大的机会。这样做需要假设/反事实推理,以便在做出不同决定时对潜在结果进行推理。3)人在回路系统。人工智能具有极大地扩大人类智能和效率的潜力。我们正在开发一个系统,用其他众包商(CHI 2016)生产的(机器)固化材料对众包商进行训练,并确定何时扩展系统规格以包括新内容(AAAI 2017)或传感器。我们也有兴趣研究确保机器学习系统在人类用户的意图方面表现良好(Arxiv 2017),也被称为安全和公平的机器学习。

个人主页:https://cs.stanford.edu/people/ebrun/

4.课程安排

01: 强化学习导论(Introduction to Reinforcement Learning)

02: 表格MDP规划(Tabular MDP planning)

03: 表格RL政策评估(Tabular RL policy evaluation)

04: Q-learning

05: 带函数逼近的强化学习(RL with function approximation)

06: 带函数逼近的强化学习(RL with function approximation)

07: 带函数逼近的强化学习(RL with function approximation)

08: 从马尔可夫决策过程到强化学习(Policy search)

09: 从马尔可夫决策过程到强化学习(Policy search)

10: 课堂中期(In-class Midterm)

11: 模仿学习/探索(Imitation learning/Exploration)

12: 探索/开发(Exploration/Exploitation)

13: 探索/开发(Exploration/Exploitation)

14: 批处理强化学习(Batch Reinforcement Learning)

15: 嘉宾讲座:Craig Boutilier(Guest Lecture: Craig Boutilier)

16: 课堂测验(In-class Quiz)

17: 蒙特卡洛树搜索算法(Monte Carlo Tree Search)

18: 墙报展示(Poster presentations)

成为VIP会员查看完整内容
0
55

课程名称: Deep Learning

课程简介:

深度机器学习的最新发展使视觉识别、语音和文本理解或自主智能体系统取得了前所未有的巨大进步。在此背景下,本课程将深入探讨深度学习架构的细节,重点是学习这些任务的端到端模型。学生将学习实施、训练和调试自己的神经网络,并对该领域的前沿研究有详细的了解。该课程还将介绍推理方法的最新创新,包括微分推理、对抗性训练和贝叶斯深度学习。

课程大纲:

  • 机器学习基础
  • 神经网络
  • 卷积神经网络
  • 训练神经网络
  • 递归神经网路
  • 自动编码器和生成模型
  • 生成式对抗网络
  • 不确定性
  • 对抗性攻击与防御

讲师介绍:

Gilles Louppe是比利时列日大学人工智能和深度学习的副教授。他曾是纽约大学物理系和数据科学中心的博士后助理,与欧洲核子研究中心的阿特拉斯实验关系密切。他的研究处于机器学习、人工智能和物理科学的交叉点上,他目前的研究兴趣包括使用和设计新的机器学习算法,以新的和变革性的方式处理来自基础科学的数据驱动的问题。个人官网: http://www.montefiore.ulg.ac.be/~glouppe

下载索引:链接:https://pan.baidu.com/s/1VP1jUnzLbESolEwU08-u9Q;提取码:b8j2

成为VIP会员查看完整内容
0
125

本课程涵盖了机器学习和统计建模方面的广泛主题。 虽然将涵盖数学方法和理论方面,但主要目标是为学生提供解决实际中发现的数据科学问题所需的工具和原理。 本课程还可以作为基础,以提供更多专业课程和进一步的独立学习。 本课程是数据科学中心数据科学硕士学位课程核心课程的一部分。 此类旨在作为DS-GA-1001数据科学概论的延续,其中涵盖了一些重要的基础数据科学主题,而这些主题可能未在此DS-GA类中明确涵盖。

课程大纲

  • Week 1:统计学习理论框架
  • Week 2:随机梯度下降
  • Week 3:正则化,Lasso, 和 Elastic网,次梯度方法
  • Week 4:损失函数,SVM,代表定理
  • Week 5:核方法
  • Week 6:最大似然,条件概率
  • Week 7:期中
  • Week 8:贝叶斯方法
  • Week 9:贝叶斯条件概率,多分类
  • Week 10:分类和回归树
  • Week 11:bagging和随机森林,梯度提升
  • Week 12:K-Means,高斯混合模型
  • Week 13:EM算法
  • Week 14:神经网络,反向传播
成为VIP会员查看完整内容
kechengDS-GA1003-Spring2019.pdf
0
34
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2020年9月27日
专知会员服务
58+阅读 · 2020年7月14日
专知会员服务
114+阅读 · 2020年5月22日
【2020新书】简明机器学习导论,电子书与500页PPT
专知会员服务
175+阅读 · 2020年2月7日
专知会员服务
55+阅读 · 2020年1月15日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
34+阅读 · 2019年10月29日
相关论文
XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization
Junjie Hu,Sebastian Ruder,Aditya Siddhant,Graham Neubig,Orhan Firat,Melvin Johnson
3+阅读 · 2020年3月24日
Zero-Shot Object Detection
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
7+阅读 · 2018年7月27日
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
4+阅读 · 2018年6月5日
Sandeep Subramanian,Tong Wang,Xingdi Yuan,Saizheng Zhang,Yoshua Bengio,Adam Trischler
4+阅读 · 2018年5月30日
Xuefei Zhe,Shifeng Chen,Hong Yan
6+阅读 · 2018年3月28日
Matthew E. Peters,Mark Neumann,Mohit Iyyer,Matt Gardner,Christopher Clark,Kenton Lee,Luke Zettlemoyer
9+阅读 · 2018年3月22日
Mohammad Mehdi Keikha,Maseud Rahgozar,Masoud Asadpour
3+阅读 · 2018年2月19日
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
14+阅读 · 2018年1月27日
Top