We consider a singularly perturbed time dependent problem with a shift term in space. On appropriately defined layer adapted meshes of Dur\'an- and S-type we derive a-priori error estimates for the stationary problem. Using a discontinuous Galerkin method in time we obtain error estimates for the full discretisation. Introduction of a weighted scalar products and norms allows us to estimate the time-dependent problem in energy and balanced norm. So far it was open to prove such a result. Some numerical results are given to confirm the predicted theory and to show the effect of shifts on the solution.
翻译:我们将空间变化期视为异常动荡的时间依赖问题。 在适当定义的层上,我们得出固定问题的优先误差估计值。 使用不连续的Galerkin方法来获取完全离散的误差估计值。 引入加权的标价产品和规范可以让我们估算能源和平衡规范中的时间依赖问题。 到目前为止,可以证明这一结果。 提供了一些数字结果,以证实预测的理论,并显示转变对解决方案的影响。