The aim of this paper is twofold. Based on the geometric Wasserstein tangent space, we first introduce Wasserstein steepest descent flows. These are locally absolutely continuous curves in the Wasserstein space whose tangent vectors point into a steepest descent direction of a given functional. This allows the use of Euler forward schemes instead of minimizing movement schemes introduced by Jordan, Kinderlehrer and Otto. For locally Lipschitz continuous functionals which are $\lambda$-convex along generalized geodesics, we show that there exists a unique Wasserstein steepest descent flow which coincides with the Wasserstein gradient flow. The second aim is to study Wasserstein flows of the (maximum mean) discrepancy with respect to certain Riesz kernels. The crucial part is hereby the treatment of the interaction energy. Although it is not $\lambda$-convex along generalized geodesics, we give analytic expressions for Wasserstein steepest descent flows of the interaction energy starting at Dirac measures. In contrast to smooth kernels, the particle may explode, i.e., the Dirac measure becomes a non-Dirac one. The computation of steepest descent flows amounts to finding equilibrium measures with external fields, which nicely links Wasserstein flows of interaction energies with potential theory. Furthermore, we prove convergence of the minimizing movement scheme to our Wasserstein steepest descent flow. Finally, we provide analytic Wasserstein steepest descent flows of discrepancies in one dimension and numerical simulations in two and three dimensions.
翻译:本文的目的是双重的。 根据瓦塞斯坦最陡峭的地理空间, 我们首先引入了瓦塞斯坦最陡峭的下降流。 这些是瓦塞斯坦空间中当地绝对连续的曲线, 其伸缩的矢量指向某个功能的最陡峭的下降方向。 这允许使用尤勒前方计划, 而不是将约旦、 基德勒元首 和 奥托 引入的移动计划最小化。 当地利普施茨 连续的功能是 $\ lambda$- convex 和 通用的地德学, 我们用瓦塞斯坦 最陡峭的下降流表示, 我们从Dirac 测量开始, 与瓦塞斯坦 梯梯流的滑动相吻合。 第二个目标是研究瓦塞斯坦 的( 最高平均值) 与某些Riesz 内核内核的偏移, 关键部分是处理相互作用的能量。 虽然它不是 $\ lambda$- convexx 和 通用的地平流, 我们给出了瓦塞斯坦最陡的垂直的下游流 。