Automatic summarization techniques aim to shorten and generalize information given in the text while preserving its core message and the most relevant ideas. This task can be approached and treated with a variety of methods, however, not many attempts have been made to produce solutions specifically for the Russian language despite existing localizations of the state-of-the-art models. In this paper, we aim to showcase ruGPT3 ability to summarize texts, fine-tuning it on the corpora of Russian news with their corresponding human-generated summaries. Additionally, we employ hyperparameter tuning so that the model's output becomes less random and more tied to the original text. We evaluate the resulting texts with a set of metrics, showing that our solution can surpass the state-of-the-art model's performance without additional changes in architecture or loss function. Despite being able to produce sensible summaries, our model still suffers from a number of flaws, namely, it is prone to altering Named Entities present in the original text (such as surnames, places, dates), deviating from facts stated in the given document, and repeating the information in the summary.


翻译:自动总和技术旨在缩短和普及文本中的信息,同时保留其核心信息及最相关的想法; 这项工作可以采用各种方法处理和处理,然而,尽管目前最先进的模型已经本地化,但并没有作出多少努力,专门为俄语提出解决办法; 在本文中,我们的目标是展示RuGPT3 的文本摘要能力,对俄罗斯新闻总库及其相应的人造摘要进行微调; 此外,我们采用超光谱调整,使模型的输出减少随机性能,并更多地与原始文本挂钩; 我们用一套衡量尺度对所产生的案文进行评价,表明我们的解决方案可以超过最新模型的性能,而无需对结构或损失功能作更多的改动; 尽管我们能够产生一些合理的摘要,但我们的模型仍然存在着许多缺陷,即很容易改变原始文本(例如姓氏、地点、日期)、偏离特定文件中陈述的事实以及重复摘要中的信息。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
预训练语言模型fine-tuning近期进展概述
专知会员服务
40+阅读 · 2021年4月9日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
已删除
将门创投
3+阅读 · 2017年9月12日
Arxiv
0+阅读 · 2021年10月5日
Compression of Deep Learning Models for Text: A Survey
Arxiv
5+阅读 · 2019年8月22日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
预训练语言模型fine-tuning近期进展概述
专知会员服务
40+阅读 · 2021年4月9日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
已删除
将门创投
3+阅读 · 2017年9月12日
Top
微信扫码咨询专知VIP会员