Data-driven approaches to modeling physical systems fail to generalize to unseen systems that share the same general dynamics with the learning domain, but correspond to different physical contexts. We propose a new framework for this key problem, context-informed dynamics adaptation (CoDA), which takes into account the distributional shift across systems for fast and efficient adaptation to new dynamics. CoDA leverages multiple environments, each associated to a different dynamic, and learns to condition the dynamics model on contextual parameters, specific to each environment. The conditioning is performed via a hypernetwork, learned jointly with a context vector from observed data. The proposed formulation constrains the search hypothesis space to foster fast adaptation and better generalization across environments. We theoretically motivate our approach and show state-of-the-art generalization results on a set of nonlinear dynamics, representative of a variety of application domains. We also show, on these systems, that new system parameters can be inferred from context vectors with minimal supervision.
翻译:数据驱动的物理系统建模方法未能推广到与学习领域具有相同一般动态的无形系统,但又与不同的物理环境相对应。我们为这一关键问题提出了一个新的框架,即环境知情的动态适应(CoDA),其中考虑到各系统之间的分布变化,以便快速和有效地适应新的动态。CoDA利用多种环境,每个环境都与不同的动态相关,并学习根据每个环境的特定背景参数来决定动态模型。调节是通过超网络进行的,与观测数据的背景矢量一起学习。拟议的配方限制了搜索假设空间,以促进快速适应和更好地在各种环境中实现总体化。我们从理论上激励我们的方法,并展示一套非线性动态、代表各种应用领域的最先进的一般化结果。我们还在这些系统中显示,可以从最小监督的上下文矢量推断出新的系统参数。