Patient-specific cardiac computational models are essential for the efficient realization of precision medicine and in-silico clinical trials using digital twins. Cardiac digital twins can provide non-invasive characterizations of cardiac functions for individual patients, and therefore are promising for the patient-specific diagnosis and therapy stratification. However, current workflows for both the anatomical and functional twinning phases, referring to the inference of model anatomy and parameter from clinical data, are not sufficiently efficient, robust, and accurate. In this work, we propose a deep learning based patient-specific computational model, which can fuse both anatomical and electrophysiological information for the inference of ventricular activation properties, i.e., conduction velocities and root nodes. The activation properties can provide a quantitative assessment of cardiac electrophysiological function for the guidance of interventional procedures. We employ the Eikonal model to generate simulated electrocardiogram (ECG) with ground truth properties to train the inference model, where specific patient information has also been considered. For evaluation, we test the model on the simulated data and obtain generally promising results with fast computational time.
翻译:使用数字双胞胎进行精密医学和硅临床试验,切合病人心肺计算模型是有效实现精密医学和硅基临床试验的关键。心血管数字双胞胎可以为个别病人提供心脏功能的非侵入性特征,因此对病人的诊断和治疗分层很有希望。然而,目前的解剖和功能结对阶段的工作流程,即模型解剖和临床数据参数的推论,不够有效、有力和准确。在这项工作中,我们提议基于深入学习的病人特定计算模型,可以结合解剖和电生理信息,以推断心血管激活特性,即导电动速度和根节点。激活特性可对心脏电动生理功能进行定量评估,以指导干预程序。我们使用Ekonal模型生成模拟电心电图(ECG),并具有地面真伪性。在考虑特定病人信息的情况下,对推断模型进行培训。在评估时,我们测试模拟数据模型,并用快速的测算结果。