We investigate the approximation of weighted integrals over $\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes, for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures . For $d \ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\mathbb{R}^d$.
翻译:我们调查了从混合光滑的加权索博列夫空格中取出的正数的加权构件在$mathbb{R ⁇ d$的近似值。 我们证明在这些空格上的函数上,最优等象形的趋同率与n$整合节点的趋同率的上下边界限。 在一维情况下,我们获得了最优等象形的正确趋同率 $(d=1) 。 对于 $d\ge 2 美元, 上界由在函数域的阶梯双曲十字上带带的集成节点的稀网形方块进行。 $\ mathbb{R ⁇ d$ 。