A frequency $n$-cube $F^n(q;l_0,...,l_{m-1})$ is an $n$-dimensional $q$-by-...-by-$q$ array, where $q = l_0+...+l_{m-1}$, filled by numbers $0,...,m-1$ with the property that each line contains exactly $l_i$ cells with symbol $i$, $i = 0,...,m-1$ (a line consists of $q$ cells of the array differing in one coordinate). The trivial upper bound on the number of frequency $n$-cubes is $m^{(q-1)^{n}}$. We improve that lower bound for $n>2$, replacing $q-1$ by a smaller value, by constructing a testing set of size $s^{n}$, $s<q-1$, for frequency $n$-cubes (a testing sets is a collection of cells of an array the values in which uniquely determine the array with given parameters). We also construct new testing sets for generalized frequency $n$-cubes, which are essentially correlation immune functions in $n$ $q$-valued arguments; the cardinalities of new testing sets are smaller than for testing sets known before.
翻译:以美元(q;l_0,...,l ⁇ m-1})为单位,以美元为单位,由美元=l_0+...+l ⁇ m-1美元填补,由0....,m-1美元以每行内精确含有美元符号的一美元电池(美元;美元=0,...)和m-1美元(一行由各阵列不同的美元格数组成)。 美元-立方美元数的微值上限为$+美元(q-1)+美元。我们改进了美元=美元=0+...+l ⁇ m-1美元的约束,以较小价值取而代之,为每行内每行内精确含有美元大小为1美元(美元),美元=0,...,m-1美元(一行由各阵列中不同的一个阵列组成,以美元计数为单位组成。 美元-立方块的频率为美元(q-q)的最小值约束值是美元(q-1美元)的通用频率测试。 我们还为美元-美元测试标准中已知的基数基数的基数基本为美元。