In a series of papers, the author introduced models of linear logic known as "Interaction Graphs". These models generalise Girard's various geometry of interaction constructions, providing a unifying framework for those. In this work, we exhibit how these models can be understood mathematically through a cocycle property satisfied by zeta functions of dynamical systems. Focussing on probabilistic models, we then explain how the notion of graphings used in the models captures a natural class of Markov processes. We further extend previous constructions to provide a model of second-order linear logic as a type system over the set of all (discrete-time) sub-Markov processes.
翻译:在一系列论文中,作者介绍了称为“互动图”的线性逻辑模型。这些模型概括了Girard对互动构造的各种几何结构,为这些构造提供了一个统一框架。在这项工作中,我们展示了如何通过由动态系统zeta函数所满足的双周期属性来数学地理解这些模型。侧重于概率模型,然后我们解释了模型中使用的图表概念如何捕捉到马尔科夫过程的自然类别。我们进一步扩展了先前的构造,以提供第二阶线性逻辑模型,作为一组(分立时)次马尔科夫过程的分类系统。