We introduced the Hug and Hop Markov chain Monte Carlo algorithm for estimating expectations with respect to an intractable distribution. The algorithm alternates between two kernels: Hug and Hop. Hug is a non-reversible kernel that repeatedly applies the bounce mechanism from the recently proposed Bouncy Particle Sampler to produce a proposal point far from the current position, yet on almost the same contour of the target density, leading to a high acceptance probability. Hug is complemented by Hop, which deliberately proposes jumps between contours and has an efficiency that degrades very slowly with increasing dimension. There are many parallels between Hug and Hamiltonian Monte Carlo (HMC) using a leapfrog integrator, including the order of the integration scheme, however Hug is also able to make use of local Hessian information without requiring implicit numerical integration steps, and its performance is not terminally affected by unbounded gradients of the log-posterior. We test Hug and Hop empirically on a variety of toy targets and real statistical models and find that it can, and often does, outperform HMC.


翻译:我们引入了Hug 和 Hopp Markov 连锁 Monte Carlo 算法,以估计对难以控制的分布的预期值。两个内核之间的算法替代:Hug 和 Hopp。 Hug 是一个不可逆的内核,它反复应用最近提议的Bouncy粒子采样器的反弹机制,以产生远离当前位置的推荐点,但几乎与目标密度的大致相同,导致高接受概率。 Hug 得到Hop的补充,它故意提议在轮廓之间跳跃,效率随着尺寸的增加而缓慢下降。 Hug 和 Hamiltonian Monte Carlo (HMC) 之间有许多平行点, 使用跳式集成器, 包括集成器的顺序, 但是Hug 还能在不要求隐含数字整合步骤的情况下利用当地的赫森信息, 而其性能并没有受到逻辑- 储层未划定的梯度的终极影响。 我们从实验角度测试Hug 和 Hug, 并发现它能够并且经常超越HMC 。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员