We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained and the position of an exponentially tempered L\'{e}vy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\epsilon^{-2}$ if the mean squared error is at most $\epsilon^{2}$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb guidelines for users to the best method for a given set of parameters, and illustrate its performance with numerical examples.
翻译:我们为矢量开发了一个全新的蒙特卡洛算法,其中包括超模量、达到超模量的时段、以及极温的L\\'{{e}vy 进程的位置。根据过程的增量,这种算法(作为计算成本的函数),对矢量的不连续和局部Lipschitz函数进行了几何快速的聚合(作为计算成本的函数),我们证明相应的多层次蒙特卡洛估计器具有最佳的计算复杂性(即如果平均正方差误差最高为$\epsilon ⁇ 2}美元的话,则其正方差值为$\epsilon ⁇ 2},并提供其核心限值(CLT) 。我们利用CLT为屏障选项价格和根据缓冲稳定(CGMY)模型根据实际世界数据调整/估计的缩编而采取的各种风险措施建立信心间隔。我们为用户提供了与现有近比法的不简单和无谓的比较,从而导致为最佳参数集的最佳方法制定了规则准则准则指南,并用数字示例说明其性。