This paper provides a precise error analysis for the maximum likelihood estimate $\hat{a}_{\text{ML}}(u_1^n)$ of the parameter $a$ given samples $u_1^n = (u_1, \ldots, u_n)'$ drawn from a nonstationary Gauss-Markov process $U_i = a U_{i-1} + Z_i,~i\geq 1$, where $U_0 = 0$, $a> 1$, and $Z_i$'s are independent Gaussian random variables with zero mean and variance $\sigma^2$. We show a tight nonasymptotic exponentially decaying bound on the tail probability of the estimation error. Unlike previous works, our bound is tight already for a sample size of the order of hundreds. We apply the new estimation bound to find the dispersion for lossy compression of nonstationary Gauss-Markov sources. We show that the dispersion is given by the same integral formula that we derived previously for the asymptotically stationary Gauss-Markov sources, i.e., $|a| < 1$. New ideas in the nonstationary case include separately bounding the maximum eigenvalue (which scales exponentially) and the other eigenvalues (which are bounded by constants that depend only on $a$) of the covariance matrix of the source sequence, and new techniques in the derivation of our estimation error bound.
翻译:本文提供精确的错误分析, 用于从非静止高斯- 马尔科夫进程抽取的参数 $\ hat{ a} text{ mal{ {( u_ 1} n) 最大可能性估算 $ hat{ a} text{}}} {( u_ 1} n) 美元, 参数最大可能性估算 $( $_ 1美元) 美元, 给定样本 $_ 1美元 = ( u_ 1美元) 美元, 参数的随机变量为独立的高斯随机变量, 平均和差异 $\ sigma_ 2美元 。 我们显示, 从非静止高斯- 马尔科夫 进程抽取 $ $ = ( i_ 1 美元), 我们的捆绑绑绑定, 我们的绑定 已经紧了 。 我们的绑定值是用于非静止高斯- Markov 来源的最小值 。 我们的最小值是新组合公式, 我们的基调值 $- Markov 。