In this paper, we consider the nonparametric estimation problem of the drift function of stochastic differential equations driven by $\alpha$-stable L\'{e}vy motion. First, the Kullback-Leibler divergence between the path probabilities of two stochastic differential equations with different drift functions is optimized. By using the Lagrangian multiplier, the variational formula based on the stationary Fokker-Planck equation is constructed. Then combined with the data information, the empirical distribution is used to replace the stationary density, and the drift function is estimated non-parametrically from the perspective of the process. In the numerical experiment, the different amounts of data and different $\alpha$ values are studied. The experimental results show that the estimation result of the drift function is related to both. When the amount of data increases, the estimation result will be better, and when the $\alpha$ value increases, the estimation result is also better.
翻译:在本文中,我们考虑了由 $\ alpha$- sable L\' {e} vy motion 驱动的随机差异方程式的漂移功能的非参数估计问题。 首先,对两个具有不同漂移功能的随机差异方程式的路径概率之间的 Kullback- Leibler 差异进行了优化。 通过使用 Lagrangian 乘数,根据固定的 Fokker-Planck 方程式构建了变异公式。 然后,与数据信息相结合,用经验分布取代固定密度,从过程角度对漂移函数进行非参数估计。在数值实验中,数据的不同数量和不同的 $\ alpha$值进行了研究。实验结果显示,漂移函数的估计结果与两者都相关。 当数据量增加时,估计结果会更好,当美元/ alpha美元值增加时,估计结果也会更好。