In this paper, we consider the nonparametric estimation problem of the drift function of stochastic differential equations driven by $\alpha$-stable L\'{e}vy motion. First, the Kullback-Leibler divergence between the path probabilities of two stochastic differential equations with different drift functions is optimized. By using the Lagrangian multiplier, the variational formula based on the stationary Fokker-Planck equation is constructed. Then combined with the data information, the empirical distribution is used to replace the stationary density, and the drift function is estimated non-parametrically from the perspective of the process. In the numerical experiment, the different amounts of data and different $\alpha$ values are studied. The experimental results show that the estimation result of the drift function is related to both. When the amount of data increases, the estimation result will be better, and when the $\alpha$ value increases, the estimation result is also better.


翻译:在本文中,我们考虑了由 $\ alpha$- sable L\' {e} vy motion 驱动的随机差异方程式的漂移功能的非参数估计问题。 首先,对两个具有不同漂移功能的随机差异方程式的路径概率之间的 Kullback- Leibler 差异进行了优化。 通过使用 Lagrangian 乘数,根据固定的 Fokker-Planck 方程式构建了变异公式。 然后,与数据信息相结合,用经验分布取代固定密度,从过程角度对漂移函数进行非参数估计。在数值实验中,数据的不同数量和不同的 $\ alpha$值进行了研究。实验结果显示,漂移函数的估计结果与两者都相关。 当数据量增加时,估计结果会更好,当美元/ alpha美元值增加时,估计结果也会更好。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员