Contrastive learning approaches have achieved great success in learning visual representations with few labels of the target classes. That implies a tantalizing possibility of scaling them up beyond a curated "seed" benchmark, to incorporating more unlabeled images from the internet-scale external sources to enhance its performance. However, in practice, larger amount of unlabeled data will require more computing resources due to the bigger model size and longer training needed. Moreover, open-world unlabeled data usually follows an implicit long-tail class or attribute distribution, many of which also do not belong to the target classes. Blindly leveraging all unlabeled data hence can lead to the data imbalance as well as distraction issues. This motivates us to seek a principled approach to strategically select unlabeled data from an external source, in order to learn generalizable, balanced and diverse representations for relevant classes. In this work, we present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK), which follows three simple principles: (1) tailness, which encourages sampling of examples from tail classes, by sorting the empirical contrastive loss expectation (ECLE) of samples over random data augmentations; (2) proximity, which rejects the out-of-distribution outliers that may distract training; and (3) diversity, which ensures diversity in the set of sampled examples. Empirically, using ImageNet-100-LT (without labels) as the seed dataset and two "noisy" external data sources, we demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features, as evaluated via linear classifier evaluation on full-shot and few-shot settings. The code is available at: https://github.com/VITA-Group/MAK


翻译:对比式学习方法在学习视觉表现方面取得了巨大成功,目标类标签很少。 这意味着在学习视觉表现方面取得了巨大的成功, 目标类标签很少。 这意味着盲目地利用所有未标记的数据, 从而导致数据失衡和持续分散问题。 这促使我们寻求一种有原则的方法,从外部源中战略性地选择未标记的数据, 以便从外部源中学习通用、 平衡和多样的表达方式。 然而, 在这项工作中, 我们提出了一个开放世界无标记的数据取样框架, 称为Model-Aware K-center (MAK), 它遵循三个简单的原则:(1) 尾巴, 它鼓励从尾巴类中提取实例, 通过分解实验性对比性显示数据失衡以及持续分散的问题。 (ECLE) 这促使我们寻求一种有原则的方法,从外部源中从战略上选择未标记的数据, 以便学习通用、均衡和多样的表达方式。 (ECLE) 使用不精确的模板, 可以确定数据多样性的准确性数据, 并且通过直接的排序, 将数据排序中的数据排序中, 确定。

0
下载
关闭预览

相关内容

德勤发布《2021年技术趋势》161页pdf(附下载)
专知会员服务
96+阅读 · 2021年4月16日
专知会员服务
47+阅读 · 2020年12月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【智能制造】智能制造与实践
产业智能官
9+阅读 · 2019年3月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
德勤发布《2021年技术趋势》161页pdf(附下载)
专知会员服务
96+阅读 · 2021年4月16日
专知会员服务
47+阅读 · 2020年12月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【智能制造】智能制造与实践
产业智能官
9+阅读 · 2019年3月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员