Automatic brain tumor segmentation from multi-modality Magnetic Resonance Images (MRI) using deep learning methods plays an important role in assisting the diagnosis and treatment of brain tumor. However, previous methods mostly ignore the latent relationship among different modalities. In this work, we propose a novel end-to-end Modality-Pairing learning method for brain tumor segmentation. Paralleled branches are designed to exploit different modality features and a series of layer connections are utilized to capture complex relationships and abundant information among modalities. We also use a consistency loss to minimize the prediction variance between two branches. Besides, learning rate warmup strategy is adopted to solve the problem of the training instability and early over-fitting. Lastly, we use average ensemble of multiple models and some post-processing techniques to get final results. Our method is tested on the BraTS 2020 validation dataset, obtaining promising segmentation performance, with average dice scores of $0.908, 0.856, 0.787$ for the whole tumor, tumor core and enhancing tumor, respectively. We won the second place of the BraTS 2020 Challenge for the tumor segmentation on the testing dataset.


翻译:使用深层学习方法从多式磁共振成像(MRI)中进行自动脑肿瘤分解,在协助诊断和治疗脑肿瘤方面起着重要作用。然而,以往的方法大多忽视了不同模式之间的潜在关系。在这项工作中,我们建议采用新型的端到端模式-平衡学习方法进行脑肿瘤分解。平行的分支旨在利用不同模式特征,并使用一系列层连接来捕捉各种模式之间的复杂关系和丰富信息。我们还使用一致性损失来尽量减少两个分支之间的预测差异。此外,还采用了学习速率加热战略来解决培训不稳定和早期超配问题。最后,我们使用多个模型的平均组合和一些后处理技术来获得最终结果。我们的方法在BRATS 2020 验证数据集上进行了测试,获得了有希望的分解性,整个肿瘤、肿瘤核心和强化肿瘤的平均分数分别为0.908、0.856、0.787美元和0.877美元。我们赢得了BRATS 2020年肿瘤分解在测试数据集上的第二个挑战。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月26日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Top
微信扫码咨询专知VIP会员