End-to-end speech summarization (E2E SSum) is a technique to directly generate summary sentences from speech. Compared with the cascade approach, which combines automatic speech recognition (ASR) and text summarization models, the E2E approach is more promising because it mitigates ASR errors, incorporates nonverbal information, and simplifies the overall system. However, since collecting a large amount of paired data (i.e., speech and summary) is difficult, the training data is usually insufficient to train a robust E2E SSum system. In this paper, we present two novel methods that leverage a large amount of external text summarization data for E2E SSum training. The first technique is to utilize a text-to-speech (TTS) system to generate synthesized speech, which is used for E2E SSum training with the text summary. The second is a TTS-free method that directly inputs phoneme sequence instead of synthesized speech to the E2E SSum model. Experiments show that our proposed TTS- and phoneme-based methods improve several metrics on the How2 dataset. In particular, our best system outperforms a previous state-of-the-art one by a large margin (i.e., METEOR score improvements of more than 6 points). To the best of our knowledge, this is the first work to use external language resources for E2E SSum. Moreover, we report a detailed analysis of the How2 dataset to confirm the validity of our proposed E2E SSum system.


翻译:端到端语音总和( E2E SSum) 是一种直接从演讲中生成摘要句子的技术。 与将自动语音识别( ASR) 和文本总和模型相结合的级联方法相比, E2E 方法更有希望, 因为它会减少 ASR 错误, 包含非语言信息, 并简化了整个系统。 但是, 由于收集大量配对数据( 即, 语音和摘要) 十分困难, 培训数据通常不足以培训强大的 E2 E2 E SSum 系统。 在本文中, 我们提出了两种新颖的方法, 利用大量外部文本识别数据来为 E2 E SSum 培训提供外部文本识别和汇总数据。 第一种方法是利用文本对语音的合成系统生成综合语言。 第二种是免费技术技术, 直接输入电话序列而不是对 E2 E2 SSum 模型的合成语言系统。 实验显示, 我们提议的基于 TTS- 和 电话的 方法, 将大量的外部文本数据转换为 E2 的系统, 如何改进E 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年4月24日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员