Nowadays, several deep learning methods are proposed to tackle the challenge of epileptic seizure prediction. However, these methods still cannot be implemented as part of implantable or efficient wearable devices due to their large hardware and corresponding high-power consumption. They usually require complex feature extraction process, large memory for storing high precision parameters and complex arithmetic computation, which greatly increases required hardware resources. Moreover, available yield poor prediction performance, because they adopt network architecture directly from image recognition applications fails to accurately consider the characteristics of EEG signals. We propose in this paper a hardware-friendly network called Binary Single-dimensional Convolutional Neural Network (BSDCNN) intended for epileptic seizure prediction. BSDCNN utilizes 1D convolutional kernels to improve prediction performance. All parameters are binarized to reduce the required computation and storage, except the first layer. Overall area under curve, sensitivity, and false prediction rate reaches 0.915, 89.26%, 0.117/h and 0.970, 94.69%, 0.095/h on American Epilepsy Society Seizure Prediction Challenge (AES) dataset and the CHB-MIT one respectively. The proposed architecture outperforms recent works while offering 7.2 and 25.5 times reductions on the size of parameter and computation, respectively.
翻译:目前,提出了几种深层次的学习方法,以应对癫痫癫痫发作预测的挑战。然而,由于这些方法的大型硬件和相应的高耗能,这些方法仍无法作为可移植或高效磨损装置的一部分加以实施,因为它们通常需要复杂的特征提取过程、储存高精度参数的大型记忆和复杂的计算计算,这大大增加了所需的硬件资源。此外,现有的网络结构预测性能不佳,因为它们采用图像识别应用的直接网络结构未能准确考虑EEEEG信号的特性。我们在本文件中提议建立一个硬件友好网络,称为二元单维进化神经神经网络(BSDCNNN),用于癫痫发作预测。BSDCNN利用 1D革命内核来改进预测性能。所有参数都经过二元化,以减少所需的计算和储存,但第一层除外。曲线下的整体、敏感度和假预测率达到0.915、8917/h和0.970、94.69%、0.095/h分别用于美国Epilepsy Soc Socie Socie Strienal Ex and CHB-MIT(AES)的数据集和CH-MIT-Mis report 1:7.2,分别提供最新7.2的缩缩缩缩缩缩和缩缩缩数。