Nowadays, several deep learning methods are proposed to tackle the challenge of epileptic seizure prediction. However, these methods still cannot be implemented as part of implantable or efficient wearable devices due to their large hardware and corresponding high-power consumption. They usually require complex feature extraction process, large memory for storing high precision parameters and complex arithmetic computation, which greatly increases required hardware resources. Moreover, available yield poor prediction performance, because they adopt network architecture directly from image recognition applications fails to accurately consider the characteristics of EEG signals. We propose in this paper a hardware-friendly network called Binary Single-dimensional Convolutional Neural Network (BSDCNN) intended for epileptic seizure prediction. BSDCNN utilizes 1D convolutional kernels to improve prediction performance. All parameters are binarized to reduce the required computation and storage, except the first layer. Overall area under curve, sensitivity, and false prediction rate reaches 0.915, 89.26%, 0.117/h and 0.970, 94.69%, 0.095/h on American Epilepsy Society Seizure Prediction Challenge (AES) dataset and the CHB-MIT one respectively. The proposed architecture outperforms recent works while offering 7.2 and 25.5 times reductions on the size of parameter and computation, respectively.


翻译:目前,提出了几种深层次的学习方法,以应对癫痫癫痫发作预测的挑战。然而,由于这些方法的大型硬件和相应的高耗能,这些方法仍无法作为可移植或高效磨损装置的一部分加以实施,因为它们通常需要复杂的特征提取过程、储存高精度参数的大型记忆和复杂的计算计算,这大大增加了所需的硬件资源。此外,现有的网络结构预测性能不佳,因为它们采用图像识别应用的直接网络结构未能准确考虑EEEEG信号的特性。我们在本文件中提议建立一个硬件友好网络,称为二元单维进化神经神经网络(BSDCNNN),用于癫痫发作预测。BSDCNN利用 1D革命内核来改进预测性能。所有参数都经过二元化,以减少所需的计算和储存,但第一层除外。曲线下的整体、敏感度和假预测率达到0.915、8917/h和0.970、94.69%、0.095/h分别用于美国Epilepsy Soc Socie Socie Strienal Ex and CHB-MIT(AES)的数据集和CH-MIT-Mis report 1:7.2,分别提供最新7.2的缩缩缩缩缩缩和缩缩缩数。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
0+阅读 · 2022年8月2日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
19+阅读 · 2018年6月27日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员