This paper seeks to answer the following question: "What can we learn by predicting accuracy?" Indeed, classification is one of the most popular task in machine learning and many loss functions have been developed to maximize this non-differentiable objective. Unlike past work on loss function design, which was mostly guided by intuition and theory before being validated by experimentation, here we propose to approach this problem in the opposite way : we seek to extract knowledge from experiments. This data-driven approach is similar to that used in physics to discover general laws from data. We used a symbolic regression method to automatically find a mathematical expression that is highly correlated with the accuracy of a linear classifier. The formula discovered on more than 260 datasets has a Pearson correlation of 0.96 and a r2 of 0.93. More interestingly, this formula is highly explainable and confirms insights from various previous papers on loss design. We hope this work will open new perspectives in the search for new heuristics leading to a deeper understanding of machine learning theory.
翻译:本文试图回答以下的问题 : “ 我们通过预测准确性可以学到什么? ” 事实上, 分类是机器学习中最流行的任务之一, 许多损失功能已经开发出来, 以最大限度地实现这个不可区分的目标。 与以往关于损失函数设计的工作不同, 损失函数设计大多以直觉和理论为指导, 而实验验证之前, 我们在这里建议以相反的方式处理这一问题: 我们试图从实验中获取知识。 这种数据驱动的方法与物理学中用来从数据中发现一般法则的方法相似。 我们使用象征性回归方法自动找到一个数学表达方式, 它与线性分类器的精确性高度相关。 在260多个数据集中发现的公式具有皮尔逊相关性, 0. 96 和 0.93 r2 的对应关系。 更有趣的是, 这个公式是高度可解释的, 并证实了以前关于损失设计的各种论文的洞察力。 我们希望, 这项工作将打开新的视角, 寻找新的超理论, 导致更深入地理解机器学习理论。