In this paper, we study the problem of relaying a single bit of information across a series of binary symmetric channels, and the associated trade-off between the number of hops $m$, the transmission time $n$, and the error probability. We introduce a simple, efficient, and deterministic protocol that attains positive information velocity (i.e., a non-vanishing ratio $\frac{m}{n}$ and small error probability) and is significantly simpler than existing protocols that do so. In addition, we characterize the optimal low-noise and high-noise scaling laws of the information velocity, and we adapt our 1-bit protocol to transmit $k$ bits over $m$ hops with $O(m+k)$ transmission time.
翻译:在本文中,我们研究了在一系列二元对称信道中传递一小块信息的问题,以及相关的信息数量、传输时间、美元和误差概率之间的权衡问题。 我们引入了一个简单、高效和决定性的协议,该协议可以实现正面信息速度(即非损耗比率$\frac{m ⁇ n}$和小误差概率),并且比现有的协议简单得多。 此外,我们确定了信息速度中最佳的低音和高音缩放法,我们调整了我们的1位协议,用O(m+k)美元传输时间传输超过1百万元的美元位数。