We study the problem of providing channel state information (CSI) at the transmitter in multi-user massive MIMO systems operating in frequency division duplexing (FDD). The wideband MIMO channel is a vector-valued random process correlated in time, space (antennas), and frequency (subcarriers). The base station (BS) broadcasts periodically beta_tr pilot symbols from its M antenna ports to K single-antenna users (UEs). Correspondingly, the K UEs send feedback messages about their channel state using beta_fb symbols in the uplink (UL). Using results from remote rate-distortion theory, we show that, as snr reaches infty, the optimal feedback strategy achieves a channel state estimation mean squared error (MSE) that behaves as Theta(1) if beta_tr < r and as Theta(snr^(-alpha)) when beta_tr >=r, where alpha = min(beta_fb/r, 1), where r is the rank of the channel covariance matrix. The MSE-optimal rate-distortion strategy implies encoding of long sequences of channel states, which would yield completely stale CSI and therefore poor multiuser precoding performance. Hence, we consider three practical one-shot CSI strategies with minimum one-slot delay and analyze their large-SNR channel estimation MSE behavior. These are: (1) digital feedback via entropy-coded scalar quantization (ECSQ), (2) analog feedback (AF), and (3) local channel estimation at the UEs and digital feedback. These schemes have different requirements in terms of knowledge of the channel statistics at the UE and at the BS. In particular, the latter strategy requires no statistical knowledge and is closely inspired by a CSI feedback scheme currently proposed in 3GPP standardization.


翻译:我们研究在多用户大规模MIMO系统频率分解(FDD)中运行的多用户大规模MIMO系统发送器中提供频道状态信息的问题。宽频MIMO频道是一个在时间、空间(antennas)和频率(subcarriers)上矢量估值随机进程。基站(BS)定期从M天线端向K单一ANTENNA用户(Ues)广播Be_tr 试点符号。与此相对,KUes在上行(UL)中使用 bea_fb 符号发送关于频道状态的反馈信息。使用远程率扭曲理论的结果,我们表明,随着Snr 抵达时,最佳反馈战略在时间、空间(antnnantr < r) 和 Theta(snr) (nnr) (al-an-an-an-an-antennannexannex) 用户端端点(k-r) 用户端点(al-fb/r,1) 用户级(al-rational-deal-ral-ral-ral-ral-ral-rational-ral-rational-ral relational reflation) commess reflation reflational reflation reflational relational refal refal) 战略要求。因此,在C-lutal-s-s-s-s-lational-slational-sal-s-s-lational-lational-slational-lational-sal-lational-deal-s-s-s-s-s-s-s-deal-sal-sal-s-sal-deal-sal-deal-deal-deal-deal-deal-deal-sal-deal-sal-sal-sal-slal-slal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-deal-deal-deal-lal-slal-lal-lal-sal-lal-sal-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员