Facing the challenge of statistical diversity in client local data distribution, personalized federated learning (PFL) has become a growing research hotspot. Although the state-of-the-art methods with model similarity-based pairwise collaboration have achieved promising performance, they neglect the fact that model aggregation is essentially a collaboration process within the coalition, where the complex multiwise influences take place among clients. In this paper, we first apply Shapley value (SV) from coalition game theory into the PFL scenario. To measure the multiwise collaboration among a group of clients on the personalized learning performance, SV takes their marginal contribution to the final result as a metric. We propose a novel personalized algorithm: pFedSV, which can 1. identify each client's optimal collaborator coalition and 2. perform personalized model aggregation based on SV. Extensive experiments on various datasets (MNIST, Fashion-MNIST, and CIFAR-10) are conducted with different Non-IID data settings (Pathological and Dirichlet). The results show that pFedSV can achieve superior personalized accuracy for each client, compared to the state-of-the-art benchmarks.
翻译:面对当地客户数据分布统计多样性的挑战,个性化联合学习(PFL)已成为日益增长的研究热点。尽管最先进的、基于模范相似的双对协作方法取得了有希望的业绩,但它们忽视了模型汇总基本上是联盟内的协作过程,因为客户之间有着复杂的多种影响。在本文中,我们首先将联盟游戏理论中的“SV”应用到PFL情景中。为了衡量一组客户之间在个性化学习表现方面的多角度合作,SV将其边际贡献作为衡量标准。我们提出了一个新的个性化算法:PFedSV,它能够1.确定每个客户的最佳协作者联盟和2.在SV的基础上进行个性化模型汇总。在各种数据集(MNIST、Fashaon-MNIST和CIFAR-10)上进行的广泛实验,使用不同的非II数据设置(Pathical和Drichlet)进行。结果显示,PFedSV可以实现每个客户的高级个性化精确度,与州基准相比较。