Facing the challenge of statistical diversity in client local data distribution, personalized federated learning (PFL) has become a growing research hotspot. Although the state-of-the-art methods with model similarity-based pairwise collaboration have achieved promising performance, they neglect the fact that model aggregation is essentially a collaboration process within the coalition, where the complex multiwise influences take place among clients. In this paper, we first apply Shapley value (SV) from coalition game theory into the PFL scenario. To measure the multiwise collaboration among a group of clients on the personalized learning performance, SV takes their marginal contribution to the final result as a metric. We propose a novel personalized algorithm: pFedSV, which can 1. identify each client's optimal collaborator coalition and 2. perform personalized model aggregation based on SV. Extensive experiments on various datasets (MNIST, Fashion-MNIST, and CIFAR-10) are conducted with different Non-IID data settings (Pathological and Dirichlet). The results show that pFedSV can achieve superior personalized accuracy for each client, compared to the state-of-the-art benchmarks.


翻译:面对当地客户数据分布统计多样性的挑战,个性化联合学习(PFL)已成为日益增长的研究热点。尽管最先进的、基于模范相似的双对协作方法取得了有希望的业绩,但它们忽视了模型汇总基本上是联盟内的协作过程,因为客户之间有着复杂的多种影响。在本文中,我们首先将联盟游戏理论中的“SV”应用到PFL情景中。为了衡量一组客户之间在个性化学习表现方面的多角度合作,SV将其边际贡献作为衡量标准。我们提出了一个新的个性化算法:PFedSV,它能够1.确定每个客户的最佳协作者联盟和2.在SV的基础上进行个性化模型汇总。在各种数据集(MNIST、Fashaon-MNIST和CIFAR-10)上进行的广泛实验,使用不同的非II数据设置(Pathical和Drichlet)进行。结果显示,PFedSV可以实现每个客户的高级个性化精确度,与州基准相比较。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Arxiv'21 | Graph Federated Learning
图与推荐
0+阅读 · 2021年11月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Arxiv'21 | Graph Federated Learning
图与推荐
0+阅读 · 2021年11月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员