In this paper, we derive the limit of experiments for one parameter Ising models on dense regular graphs. In particular, we show that the limiting experiment is Gaussian in the low temperature regime, non Gaussian in the critical regime, and an infinite collection of Gaussians in the high temperature regime. We also derive the limiting distributions of the maximum likelihood and maximum pseudo-likelihood estimators, and study limiting power for tests of hypothesis against contiguous alternatives (whose scaling changes across the regimes). To the best of our knowledge, this is the first attempt at establishing the classical limits of experiments for Ising models (and more generally, Markov random fields).
翻译:在本文中,我们得出了一个参数Ising模型的实验限值。 特别是,我们显示限制实验是低温状态下的高斯,在临界状态下是非高斯,在高温状态下是无穷无尽的。 我们还得出了最大可能性和最大假象估计器的有限分布,并研究对毗连替代物(其规模在制度上有所改变)进行假设测试的有限能力。 据我们所知,这是首次尝试为Ising模型(更一般地说,是Markov随机场)确定典型的实验限值。