We revisit the classical online portfolio selection problem. It is widely assumed that a trade-off between computational complexity and regret is unavoidable, with Cover's Universal Portfolios algorithm, SOFT-BAYES and ADA-BARRONS currently constituting its state-of-the-art Pareto frontier. In this paper, we present the first efficient algorithm, BISONS, that obtains polylogarithmic regret with memory and per-step running time requirements that are polynomial in the dimension, displacing ADA-BARRONS from the Pareto frontier. Additionally, we resolve a COLT 2020 open problem by showing that a certain Follow-The-Regularized-Leader algorithm with log-barrier regularization suffers an exponentially larger dependence on the dimension than previously conjectured. Thus, we rule out this algorithm as a candidate for the Pareto frontier. We also extend our algorithm and analysis to a more general problem than online portfolio selection, viz. online learning of quantum states with log loss. This algorithm, called SCHRODINGER'S BISONS, is the first efficient algorithm with polylogarithmic regret for this more general problem.
翻译:我们重新审视了典型的在线投资组合选择问题。 人们广泛认为,计算复杂性和遗憾之间的权衡是不可避免的,而Cover的通用组合算法、SOFT-BAYES和AD-BARRONS目前构成其最先进的帕雷托边界。在本文中,我们提出了第一个有效的算法,即BISONS,它以记忆和逐步运行的时间要求获得多面性的多面性遗憾,使ADA-BARRONS从帕雷托边界取代。此外,我们解决了COLT 2020公开的问题,我们通过显示某种带日志屏障规范化的COLT-Regalized-Leader算法对维度的依赖程度比以前预测的要大得多。 因此,我们排除了这一算法作为帕雷托边界的候选者。 我们还将我们的算法和分析扩大到一个比在线组合选择更普遍的问题,即用日志损失取代ADADADAD-BARMS。这个称为SBISONS的计算法,这是第一个与多面式问题的有效算法。