Despite the empirical success of using Adversarial Training to defend deep learning models against adversarial perturbations, so far, it still remains rather unclear what the principles are behind the existence of adversarial perturbations, and what adversarial training does to the neural network to remove them. In this paper, we present a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network; and more importantly, one of the goals of adversarial training is to remove such mixtures to purify hidden weights. We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly initialized gradient descent indeed satisfies this principle. Technically, we give, to the best of our knowledge, the first result proving that the following two can hold simultaneously for training a neural network with ReLU activation. (1) Training over the original data is indeed non-robust to small adversarial perturbations of some radius. (2) Adversarial training, even with an empirical perturbation algorithm such as FGM, can in fact be provably robust against ANY perturbations of the same radius. Finally, we also prove a complexity lower bound, showing that low complexity models such as linear classifiers, low-degree polynomials, or even the neural tangent kernel for this network, CANNOT defend against perturbations of this same radius, no matter what algorithms are used to train them.


翻译:尽管在使用Adversarial培训来保护深层次学习模型以对抗性扰动方面取得了经验性的成功,但迄今为止,对抗性培训的目标之一仍然是消除这种混合物以净化隐藏的重量。 我们在CIFAR-10数据集上提出实验以说明这一原则,并用理论结果证明,对于某些自然分类任务,我们用随机初始化梯度下降来训练双层神经网络,使用ReLU激活,这确实符合这一原则。技术上,我们从理论上讲,将某些小密度混合物累积在神经网络培训过程中的隐藏重量中;更重要的是,对抗性培训的目标之一是消除这种混合物以净化隐藏的重量。我们在CIFAR-10数据集上提出实验以说明这一原则,并用理论结果来证明,对于某些自然分类任务,我们用随机初始化梯度下降的梯度下降来训练一个双层神经网络。从技术上讲,我们把以下两种低层次的精度混合物同时用于训练一个神经网络,而RELU的精度的精度的精度网络。(1) 对原始数据的训练确实性数据是非腐蚀性, 也证明,这种精确的精度的精确性,这种精确的精确度是用来的实验性结构。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员