Neural architecture search (NAS), an important branch of automatic machine learning, has become an effective approach to automate the design of deep learning models. However, the major issue in NAS is how to reduce the large search time imposed by the heavy computational burden. While most recent approaches focus on pruning redundant sets or developing new search methodologies, this paper attempts to formulate the problem based on the data curation manner. Our key strategy is to search the architecture using summarized data distribution, i.e., core-set. Typically, many NAS algorithms separate searching and training stages, and the proposed core-set methodology is only used in search stage, thus their performance degradation can be minimized. In our experiments, we were able to save overall computational time from 30.8 hours to 3.5 hours, 8.8x reduction, on a single RTX 3090 GPU without sacrificing accuracy.
翻译:神经结构搜索(NAS)是自动机器学习的一个重要分支,已成为使深层学习模式设计自动化的有效方法,然而,NAS的主要问题是如何减少沉重的计算负担带来的大量搜索时间。虽然最近的方法侧重于裁剪冗余数据集或开发新的搜索方法,但本文件试图根据数据曲线的方式来制定问题。我们的关键战略是使用数据分布汇总,即核心数据集来搜索该结构。通常,许多NAS算法将搜索和培训阶段分开,而拟议的核心设定方法只用于搜索阶段,因此其性能退化可以最小化。 在我们的实验中,我们能够在不牺牲精确性的情况下将一个单RTX 3090 GPU上的总体计算时间从30.8小时节省到3.5小时,减少8.8x。