We show a new PRG construction fooling depth-$d$, size-$m$ $\mathsf{AC}^0$ circuits within error $\varepsilon$, which has seed length $O(\log^{d-1}(m)\log(m/\varepsilon)\log\log(m))$. Our PRG improves on previous work (Trevisan and Xue 2013, Servedio and Tan 2019, Kelley 2021) from various aspects. It has optimal dependence on $\frac{1}{\varepsilon}$ and is only one ``$\log\log(m)$'' away from the lower bound barrier. For the case of $d=2$, the seed length tightly matches the best-known PRG for CNFs (De et al. 2010, Tal 2017). There are two technical ingredients behind our new result; both of them might be of independent interest. First, we use a partitioning-based approach to construct PRGs based on restriction lemmas for $\mathsf{AC}^0$, which follows and extends the seminal work of (Ajtai and Wigderson 1989). Second, improving and extending prior works (Trevisan and Xue 2013, Servedio and Tan 2019, Kelley 2021), we prove a full derandomization of the powerful multi-switching lemma for a family of DNFs (H{\aa}stad 2014).
翻译:我们展示了一个新的PRG建设, 欺骗了深度- 美元, 大小- 百万美元, 大小- 百万美元 美元 AC=0 在错误范围内的电路 $\ varepsilon$, 其种子长度为 O(\ log ⁇ d-1}(m)\log(m)\log(m/\varepsilon)\log\log(m) 美元) 。 我们的PRG改进了我们以前的工作( 特雷凡和薛, 2013年, Servidio 和 Tan 2019, Kelley 2021) 。 首先, 我们采用基于分流法的方式, 在限制利玛斯( $ { 1unzurpleps) 的基础上建造PRGs, 仅是 $\ log\ log(m) $\ log\ $(m) log\ $(m) $( log\ log\ g) $(m) $(m) $=2$(m) laxblofer label labelf) lt 屏屏障隔接通 20( 1989) 和Silvial) lax 20( lax) laual frial) laual) lax 20 和 lax lax lax lax 20 lax lax laxxxxxxxxx 和 20xxxxxxxxxxxxxxxxxxx) 和 和 。