The combinatorial pure exploration of causal bandits is the following online learning task: given a causal graph with unknown causal inference distributions, in each round we choose a subset of variables to intervene or do no intervention, and observe the random outcomes of all random variables, with the goal that using as few rounds as possible, we can output an intervention that gives the best (or almost best) expected outcome on the reward variable $Y$ with probability at least $1-\delta$, where $\delta$ is a given confidence level. We provide the first gap-dependent and fully adaptive pure exploration algorithms on two types of causal models -- the binary generalized linear model (BGLM) and general graphs. For BGLM, our algorithm is the first to be designed specifically for this setting and achieves polynomial sample complexity, while all existing algorithms for general graphs have either sample complexity exponential to the graph size or some unreasonable assumptions. For general graphs, our algorithm provides a significant improvement on sample complexity, and it nearly matches the lower bound we prove. Our algorithms achieve such improvement by a novel integration of prior causal bandit algorithms and prior adaptive pure exploration algorithms, the former of which utilize the rich observational feedback in causal bandits but are not adaptive to reward gaps, while the latter of which have the issue in reverse.


翻译:对因果强盗的分类纯粹探索是下述在线学习任务:在每回合中,我们选择一组变量来干预或不干预,观察所有随机变量的随机结果,目标是尽可能多地使用几轮,我们就能产生出一个最佳(或几乎最佳)的干预结果,使奖励变量的预期结果产生最佳(或最佳)Y$,概率至少为1美元或德尔塔元,其中美元为某种信任水平。我们为两种类型的因果模型提供了第一个基于差距和完全适应性的纯勘探算法,即二元通用线性模型(BGLM)和一般图表。对于BGLM来说,我们的算法是第一个专门设计用于这一设置并达到多数值样本复杂性的,而一般图表的所有现有算法要么样本复杂度至少为1美元或一些不合理的假设。对于一般图表来说,我们的算法提供了样本复杂性的重大改进,而且几乎与我们所证明的较低约束度相符。我们的算法通过对两种类型的因果关系模型进行新的整合,即以前的因果宽度直线模型(BGLMM)和一般图表,我们算算法是第一个专门设计为这一设置的组合组合,而先为这一设置是用于这一设置的,而后再采用前的因果性分析的反向导的,而后演算法是前的,而后演算法是前的,而有的,而后演算法则则则是在前的,在前的因果性分析中,而采用前的变制性分析的变。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员