To achieve promising results on removing noise from real-world images, most of existing denoising networks are formulated with complex network structure, making them impractical for deployment. Some attempts focused on reducing the number of filters and feature channels but suffered from large performance loss, and a more practical and lightweight denoising network with fast inference speed is of high demand. To this end, a \textbf{Thu}mb\textbf{n}ail based \textbf{D}\textbf{e}noising Netwo\textbf{r}k dubbed Thunder, is proposed and implemented as a lightweight structure for fast restoration without comprising the denoising capabilities. Specifically, the Thunder model contains two newly-established modules: (1) a wavelet-based Thumbnail Subspace Encoder (TSE) which can leverage sub-bands correlation to provide an approximate thumbnail based on the low-frequent feature; (2) a Subspace Projection based Refine Module (SPR) which can restore the details for thumbnail progressively based on the subspace projection approach. Extensive experiments have been carried out on two real-world denoising benchmarks, demonstrating that the proposed Thunder outperforms the existing lightweight models and achieves competitive performance on PSNR and SSIM when compared with the complex designs.
翻译:为了在消除真实世界图像中的噪音方面取得有希望的成果,大多数现有的去掉网络都是以复杂的网络结构来开发的,使得这些网络不适于部署。一些尝试侧重于减少过滤器和特效频道的数量,但受到大量性能损失的影响,而一个更实际和轻量的、具有快速发酵速度的较轻的去掉网络需求很高。为此,一个基于\textbf{Thu}mb\textbf{n}nail的基于低频特性的子波段关系提供近似缩略图;一个基于 Refine 的子空间项目模块(SPR),该模块可以在不包含除色能力的情况下,作为快速恢复的轻量结构。具体地说,雷电模型包含两个新建立的模块:(1) 基于波盘的Thumbnail 子空间编码网络(TSE),可以利用子波带关系,根据低频谱特征提供近似缩略图;(2)基于Refine模块的子空间图案,可以恢复缩图案的逐步恢复细节细节,而无需说明能力。在亚空投影模型上进行的大规模测试,在SRIM模型上,在比较的模型上,通过现有的微变形进行。