Single image crowd counting is a challenging computer vision problem with wide applications in public safety, city planning, traffic management, etc. With the recent development of deep learning techniques, crowd counting has aroused much attention and achieved great success in recent years. This survey is to provide a comprehensive summary of recent advances on deep learning-based crowd counting techniques via density map estimation by systematically reviewing and summarizing more than 200 works in the area since 2015. Our goals are to provide an up-to-date review of recent approaches, and educate new researchers in this field the design principles and trade-offs. After presenting publicly available datasets and evaluation metrics, we review the recent advances with detailed comparisons on three major design modules for crowd counting: deep neural network designs, loss functions, and supervisory signals. We study and compare the approaches using the public datasets and evaluation metrics. We conclude the survey with some future directions.
翻译:单一图像人群计数是一个具有挑战性的计算机视觉问题,在公共安全、城市规划、交通管理等广泛应用中,这是一个具有挑战性的计算机视觉问题。随着近年来深层学习技术的发展,人群计数引起了人们的极大关注,并取得了巨大成功。本次调查的目的是通过对2015年以来该地区200多项工程进行密度测算,系统地审查和总结该地区200多项工程,从而全面总结在深层基于学习的人群计数技术方面的最新进展。我们的目标是对最新方法进行最新审查,对该领域的新研究人员进行设计原则和权衡教育。在提供公开的数据集和评价指标之后,我们审视了最近的进展,并详细比较了用于计数的三大主要设计模块:深度神经网络设计、损失功能和监督信号。我们用公共数据集和评价指标来研究和比较方法。我们用一些未来的方向来完成调查。