Abbe, Massouli\'e, Montanari, Sly and Srivastava proved in [AMM+18] that for any compact matrix Lie group $G$, group synchronization holds on $\mathbb{Z}^d$ when $d\geq 3$ and the ambient noise is sufficiently low. They suggest that synchronization with noisy data implies that long-range order holds for spin $O(n)$ models with a special quenched random disorder called the Nishimori line. In this paper we prove continuous symmetry breaking for disordered models whose spins take values in $\mathbb{S}^1$, $SU(n)$ or $SO(n)$ along the Nishimori line at low temperature for $d\geq 3$. The proof is based on [AMM+18] and a gauge transformation acting jointly on the disorder and the spin configurations due to Nishimori [Nis81, ON93]. The proof does not use reflection positivity. Using the correlation inequalities of [MMSP78], our results imply symmetry breaking for the $XY$ model without disorder.
翻译:Abbe, Massouli\'e, Montanari, Sly和Srivastava在[AMM+18] 中证明,对于任何紧凑的母体 Lie Group le Ge$,当$\geq 3美元和环境噪音足够低时,组同步会维持在$mathbb ⁇ d$美元上,当$d\geq 3美元和环境噪音足够低时。它们表明,与噪音数据同步意味着,长距离序列序列中带有称为Nishimori线的特制随机紊乱的O(n)模型。在本文中,我们证明,对于其旋转值在Nishimori[MSP78, $SU(n) 或$SO(n)一美元沿Nishimori线以低温在$d\geq 3美元下运行的无序模型,这些模型可以持续对称断。根据[AMMSP78],我们的结果意味着,在不考虑XY(XY) 的模型的反射法断裂。