We present a Calder\'on preconditioning scheme for the symmetric formulation of the forward electroencephalographic (EEG) problem that cures both the dense discretization and the high-contrast breakdown. Unlike existing Calder\'on schemes presented for the EEG problem, it is refinement-free, that is, the electrostatic integral operators are not discretized with basis functions defined on the barycentrically-refined dual mesh. In fact, in the preconditioner, we reuse the original system matrix thus reducing computational burden. Moreover, the proposed formulation gives rise to a symmetric, positive-definite system of linear equations, which allows the application of the conjugate gradient method, an iterative method that exhibits a smaller computational cost compared to other Krylov subspace methods applicable to non-symmetric problems. Numerical results corroborate the theoretical analysis and attest of the efficacy of the proposed preconditioning technique on both canonical and realistic scenarios.
翻译:我们为远方电脑测量(EEG)问题的对称配方提出了一个Calder\'on先决条件方案,解决了密度离散和高调分解两种问题。与现有的Calder\'on计划为EEG问题提出的不同,它没有细化,也就是说,静电整体操作者没有与在以巴中心为中心、经过精炼的双层网目上界定的基础功能分离。事实上,在先决条件中,我们重新使用原系统矩阵,从而减少了计算负担。此外,拟议的配方产生了线性方程式的对称、正对称-确定系统,使得能够应用共振梯度法,这一迭接法与适用于非对称问题的其他Krylov次空间方法相比,计算成本较低。数字结果证实了理论分析,并证明了拟议的先决条件技术在罐体和现实情景上的有效性。