Sequential Monte Carlo (SMC) methods are widely used to draw samples from intractable target distributions. Particle degeneracy can hinder the use of SMC when the target distribution is highly constrained or multimodal. As a motivating application, we consider the problem of sampling protein structures from the Boltzmann distribution. This paper proposes a general SMC method that propagates multiple descendants for each particle, followed by resampling to maintain the desired number of particles. Simulation studies demonstrate the efficacy of the method for tackling the protein sampling problem. As a real data example, we use our method to estimate the number of atomic contacts for a key segment of the SARS-CoV-2 viral spike protein.
翻译:连续的蒙特卡洛(SMC)方法被广泛用于从棘手的目标分布中提取样本。当目标分布高度受限或多式时,粒子退化会妨碍SMC的使用。作为一个激励性应用,我们考虑从Boltzmann分布中取样蛋白结构的问题。本文提出一种一般的SMC方法,为每个粒子传播多种后代,然后重新取样以保持所需的粒子数量。模拟研究表明解决蛋白质取样问题的方法的有效性。作为一个真实的数据实例,我们用我们的方法估计SARS-COV-2病毒添加蛋白的关键部分的原子接触数量。