We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the \textit{sequential predictive conformal inference} (\texttt{SPCI}). We specifically account for the nature that the time series data are non-exchangeable, and thus many existing conformal prediction algorithms based on temporal residuals are not applicable. The main idea is to exploit the temporal dependence of conformity scores; thus, the past conformity scores contain information about future ones. Then we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of \texttt{SPCI} compared to other existing methods under the desired empirical coverage.
翻译:我们为相继数据(例如时间序列)提出了一个新的无分布式一致预测算法(例如,时间序列),称为\ textit{顺序预测一致推导} (\ textt{SPCI}) 。我们具体解释了时间序列数据不可交换的性质,因此许多基于时间残存的现有一致预测算法不适用。主要想法是利用一致性分数的暂时依赖性;因此,过去的一致分数含有关于未来数据的信息。然后,我们提出符合性预测间隔的问题,以预测未来残存的定量,并给出一种预测算法。理论上,我们通过在四分回归中扩大一致性分析,确定无症状的有效有条件覆盖。我们使用模拟和真实数据实验,表明与预期的经验覆盖下的其他现有方法相比,\ textt{SP}的间宽度显著缩小。