Recently, ontology embeddings representing entities in a low-dimensional space have been proposed for ontology completion. However, the ontology embeddings for concept subsumption prediction do not address the difficulties of similar and isolated entities and fail to extract the global information of annotation axioms from an ontology. In this paper, we propose a self-matching training method for the two ontology embedding models: Inverted-index Matrix Embedding (InME) and Co-occurrence Matrix Embedding (CoME). The two embeddings capture the global and local information in annotation axioms by means of the occurring locations of each word in a set of axioms and the co-occurrences of words in each axiom. The self-matching training method increases the robustness of the concept subsumption prediction when predicted superclasses are similar to subclasses and are isolated to other entities in an ontology. Our evaluation experiments show that the self-matching training method with InME outperforms the existing ontology embeddings for the GO and FoodOn ontologies and that the method with the concatenation of CoME and OWL2Vec* outperforms them for the HeLiS ontology.
翻译:暂无翻译