In this work, we propose a model order reduction framework to deal with inverse problems in a non-intrusive setting. Inverse problems, especially in a partial differential equation context, require a huge computational load due to the iterative optimization process. To accelerate such a procedure, we apply a numerical pipeline that involves artificial neural networks to parametrize the boundary conditions of the problem in hand, compress the dimensionality of the (full-order) snapshots, and approximate the parametric solution manifold. It derives a general framework capable to provide an ad-hoc parametrization of the inlet boundary and quickly converges to the optimal solution thanks to model order reduction. We present in this contribution the results obtained by applying such methods to two different CFD test cases.
翻译:在这项工作中,我们提出一个减少订单示范框架,以处理非侵入环境中的反面问题;反面问题,特别是部分差异方程问题,由于迭代优化程序,需要大量的计算负荷;为加快这一程序,我们采用一个数字管道,涉及人工神经网络,以修复手头问题的边界条件,压缩(全序)快照的维度,并接近参数解决方案的方位;它产生一个总框架,能够对内端边界进行临时的平衡,并很快通过减少订单模式而达到最佳解决办法的一致;我们通过将这种方法应用于两个不同的CFD测试案例而得出的结果。