ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface to specify these relations and transformations and to define how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. Furthermore, it allows users to fully customize each aspect of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques, such as hybrid classification/embedding models or supervised DR, which opens up new possibilities for visualizing high-dimensional data.
翻译:ParaDime是一个参数维度减少(DR)框架。在参数DR中,神经网络受过培训,可以在低维空间嵌入高维数据项,同时尽量减少客观功能。ParaDime基于以下想法:若干现代DR技术的客观功能是经过改造的项目际关系产生的。它提供了一个共同界面,以具体说明这些关系和变换,并确定这些关系和变换如何在指导培训过程的损失中加以使用。通过这个界面,ParaDime使诸如MDS、t-SNE和UMAP等DR技术的单维度参数版本。此外,它使用户能够完全定制DR过程的每个方面。我们展示了这种定制的简单性如何使ParaDime适合实验有趣的技术,例如混合分类/编造模型或监管的DR,这些技术为高维数据的视觉化开辟了新的可能性。