In this paper, we study the mean-square stability of the solution and its stochastic theta scheme for the following stochastic differential equations drive by fractional Brownian motion with Hurst parameter $H\in (\frac 12,1)$: $$ dX(t)=f(t,X(t))dt+g(t,X(t))dB^{H}(t). $$ Firstly, we consider the special case when $f(t,X)=-\lambda\kappa t^{\kappa-1}X$ and $g(t,X)=\mu X$. The solution is explicit and is mean-square stable when $\kappa\geq 2H$. It is proved that if the parameter $2H\leq\kappa\le 3/2$ and $\frac{\sqrt{3/2}\cdot e}{\sqrt{3/2}\cdot e+1} (\approx 0.77)\leq \theta\leq 1$ or $\kappa>3/2$ and $1/2<\theta\le 1$, the stochastic theta method reproduces the mean-square stability; and that if $0<\theta<\frac 12$, the numerical method does not preserve this stability unconditionally. Secondly, we study the stability of the solution and its stochastic theta scheme for nonlinear equations. Due to the presence of long memory, even the problem of stability in the mean square sense of the solution has not been well studied since the conventional techniques powerful for stochastic differential equations driven by Brownian motion are no longer applicable. Let alone the stability of numerical schemes. We need to develop a completely new set of techniques to deal with this difficulty. Numerical examples are carried out to illustrate our theoretical results.
翻译:在本文中, 我们研究解决方案的平均平方程式的稳定性, 以及以下的随机偏差方程式的图案, 由分数布朗运动驱动, 由分数布朗运动驱动, 以赫斯特参数 $H1 驱动 。 美元 : dX( t) = f( t, X( t) ) dt+g( t, X( t) ) dB ⁇ H}( t) 。 首先, 我们考虑以下特例 : $( t, X) =\ lambda\ kapa t kappa-1} X$ 美元 和 $g( t, X) mu X$ 。 解决方案是清晰的, 当 美元 美元 (t) dX( t) = f( t) dX) dX( t, X( t) d) db) +g( t, x( t) db) dB*( tb) (t) (t) (t) lab( lab) (t) lap (t) (t) (t) (t) (x) (x (t) (t) (t) (x (t) (x) (x) (x) (x) (x (x) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (x) (x) (x) (x) (x) (t) (x) (x) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (x) (t) (x) (t) (t) (x) (x) (x) (t) (x) (x) (x) (x (t) (t) (x)))))) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (x) (t) (t) (t) (t) (x) (t) (t)