In this paper, we study two kinds of structure-preserving splitting methods, including the Lie--Trotter type splitting method and the finite difference type method, for the stochasticlogarithmic Schr\"odinger equation (SlogS equation) via a regularized energy approximation. We first introduce a regularized SlogS equation with a small parameter $0<\epsilon\ll1$ which approximates the SlogS equation and avoids the singularity near zero density. Then we present a priori estimates, the regularized entropy and energy, and the stochastic symplectic structure of the proposed numerical methods. Furthermore, we derive both the strong convergence rates and the convergence rates of the regularized entropy and energy. To the best of our knowledge, this is the first result concerning the construction and analysis of numerical methods for stochastic Schr\"odinger equations with logarithmic nonlinearities.


翻译:在本文中,我们研究了两种结构保护分解方法,包括利托式分解法和有限的差异类型法,即通过正常的能源近似值的沙沙质阵列方程式(SlogS 等方程式)。我们首先采用了一种常规的SlogS等式,其参数小,为0. ⁇ epsilon\ll1美元,接近SlogS等式,避免接近零密度的奇异性。然后我们提出了一个先验估计,固定的酶和能量,以及拟议数字方法的随机共振结构。此外,我们从中推算出已正规化的英式和能量的强趋同率和趋同率。据我们所知,这是关于构建和分析具有对数非线性的Schr\“量方程式”的数值方法的第一个结果。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
WebSocket C2 一款后渗透测试工具
黑白之道
3+阅读 · 2019年7月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
WebSocket C2 一款后渗透测试工具
黑白之道
3+阅读 · 2019年7月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员