I consider a class of statistical decision problems in which the policy maker must decide between two alternative policies to maximize social welfare (e.g., the population mean of an outcome) based on a finite sample. The central assumption is that the underlying, possibly infinite-dimensional parameter, lies in a known convex set, potentially leading to partial identification of the welfare effect. An example of such restrictions is the smoothness of counterfactual outcome functions. As the main theoretical result, I obtain a finite-sample decision rule (i.e., a function that maps data to a decision) that is optimal under the minimax regret criterion. This rule is easy to compute, yet achieves optimality among all decision rules; no ad hoc restrictions are imposed on the class of decision rules. I apply my results to the problem of whether to change a policy eligibility cutoff in a regression discontinuity setup. I illustrate my approach in an empirical application to the BRIGHT school construction program in Burkina Faso (Kazianga, Levy, Linden and Sloan, 2013), where villages were selected to receive schools based on scores computed from their characteristics. Under reasonable restrictions on the smoothness of the counterfactual outcome function, the optimal decision rule implies that it is not cost-effective to expand the program. I empirically compare the performance of the optimal decision rule with alternative decision rules.


翻译:我考虑的是一类统计决策问题,其中政策制定者必须在两种替代政策之间根据有限的抽样来决定如何最大限度地提高社会福利(例如,人口对结果的平均值),核心假设是,基础的,可能是无限的维度参数,在于已知的集合,可能导致部分确定福利效应。这种限制的一个例子是反事实结果功能的顺利性。作为主要理论结果,我获得了一个有限的抽样决定规则(即,根据微量遗憾标准,将数据映射为决定的功能),这是最佳的。这一规则容易计算,但在所有决策规则中达到最佳性;对决策规则的类别没有施加任何特别的限制。我对是否改变政策资格在回归不连续性组合中削减的问题应用我的结果。我介绍了我在布基那法索(Kazianga、Levy、Linden和Sloan,2013年)的Braight学校建设方案的经验应用方法,在这些方案中,选择村庄接收的学校是根据其特性的分数进行计算。根据最优性标准,而不是根据最优性的实际结果,对最佳性决定作出合理的限制。

0
下载
关闭预览

相关内容

【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
6+阅读 · 2021年10月26日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员