We consider the problem of parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We first establish consistency and asymptotic normality of the offline maximum likelihood estimator for the interacting particle system in the limit as the number of particles $N\rightarrow\infty$. We then propose an online estimator for the parameters of the McKean-Vlasov SDE, which evolves according to a continuous-time stochastic gradient descent algorithm on the asymptotic log-likelihood of the interacting particle system. We prove that this estimator converges in $\mathbb{L}^1$ to the stationary points of the asymptotic log-likelihood of the McKean-Vlasov SDE in the joint limit as $N\rightarrow\infty$ and $t\rightarrow\infty$, under suitable assumptions which guarantee ergodicity and uniform-in-time propagation of chaos. We then demonstrate, under the additional assumption of global strong concavity, that our estimator converges in $\mathbb{L}^2$ to the unique maximiser of this asymptotic log-likelihood function, and establish an $\mathbb{L}^2$ convergence rate. We also obtain analogous results under the assumption that, rather than observing multiple trajectories of the interacting particle system, we instead observe multiple independent replicates of the McKean-Vlasov SDE itself or, less realistically, a single sample path of the McKean-Vlasov SDE and its law. Our theoretical results are demonstrated via two numerical examples, a linear mean field model and a stochastic opinion dynamics model.


翻译:我们考虑的是Sccochastic McKan-Vlasov SDE参数的参数估算问题, 以及相关微弱互动粒子系统的相关系统。 我们首先确定互动粒子系统的离线最大概率估计值的一致性和无症状常态性。 我们首先确定互动粒子系统的离线最大概率估计值在极限范围内的离线性最大概率估计值的一致性和无症状常性。 我们然后提出麦肯- Vlasov SDE参数的在线估计值, 该参数根据持续时间的对流性梯度下行算法, 在互动粒子系统失灵时的对流性记录值上演演进。 我们随后证明, 在额外的假设下, 以 $mathbbb{L+1$为单位的离线性测算值日志, 也以美元正值的离值的直位法下演算法 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【机器学习】一文读懂线性回归、岭回归和Lasso回归
人工智能头条
6+阅读 · 2019年10月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【机器学习】一文读懂线性回归、岭回归和Lasso回归
人工智能头条
6+阅读 · 2019年10月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员