This work presents the development and validation of a digital twin for a semi-autogenous grinding (SAG) mill controlled by an expert control system. The digital twin consists of three interconnected modules that emulate the behavior of a closed-loop system: (1) fuzzy logic for the expert control system, (2) a state-space model for the regulatory control, and (3) a recurrent neural network (RNN) for the SAG mill process. The model was trained with data corresponding to 68 hours of operation and validated with 8 hours of test data. The digital twin predicts the dynamic behavior of the mill's bearing pressure, motor power, tonnage, solids percentage, and rotational speed within a 2.5-minute horizon with a 30-second sampling time. The RNN comprises two serial modules for detection and training. The disturbance detection evaluates the need for training by comparing the recent prediction error with the expected error using hypothesis tests for mean, variance, and probability distribution. If the detection module is activated, the parameters of the neural model are re-estimated with recent data. The detection module was configured with test data to eliminate false positives. Results indicate that the digital twin can satisfactorily supervise the SAG mill, which is operated with the expert control system. Future work will focus on integrating this digital twin into real-time optimization strategies with industrial validation.
翻译:暂无翻译