Direction augmentation (DA) and spatial smoothing (SS), followed by a subspace method such as ESPRIT or MUSIC, are two simple and successful approaches that enable localization of more uncorrelated sources than sensors with a proper sparse array. In this paper, we carry out nonasymptotic performance analyses of DA-ESPRIT and SS-ESPRIT in the practical finite-snapshot regime. We show that their absolute localization errors are bounded from above by $C_1\frac{\max\{\sigma^2, C_2\}}{\sqrt{L}}$ with overwhelming probability, where $L$ is the snapshot number, $\sigma^2$ is the Gaussian noise power, and $C_1,C_2$ are constants independent of $L$ and $\sigma^2$, if and only if they can do exact source localization with infinitely many snapshots. We also show that their resolution increases with the snapshot number, without a substantial limit. Numerical results corroborating our analysis are provided.
翻译:增强方向(DA)和空间平滑(SS),随后是ESPRIT或MUSIC等子空间方法,是两种简单而成功的方法,使比传感器更隐蔽的源源点能够本地化,而不是具有适当的分散阵列的传感器。在本文中,我们对DA-ESPRIT和SS-ESPRIT在实际的有限射射线系统中进行非局部性绩效分析。我们显示,它们的绝对本地化误差由上面的$C_1\fraxgmax=2、C_2 ⁇ sqrt{L ⁇ $(概率极大)捆绑绑在一起,其中的速记数是L$,Gaussian噪声能量是$\sigma_2$,而$C_1,C_2$是常数,没有L$和$\sigma2$的常数,只要它们能够用无限的快照精确源点显示它们的分辨率随快照数增加,没有重大限制。我们提供了佐证我们分析的数字结果。