This paper presents a gait controller for bipedal robots to achieve highly agile walking over various terrains given local slope and friction cone information. Without these considerations, untimely impacts can cause a robot to trip and inadequate tangential reaction forces at the stance foot can cause slippages. We address these challenges by combining, in a novel manner, a model based on an Angular Momentum Linear Inverted Pendulum (ALIP) and a Model Predictive Control (MPC) foot placement planner that is executed by the method of virtual constraints. The process starts with abstracting from the full dynamics of a Cassie 3D bipedal robot, an exact low-dimensional representation of its center of mass dynamics, parameterized by angular momentum. Under a piecewise planar terrain assumption and the elimination of terms for the angular momentum about the robot's center of mass, the centroidal dynamics about the contact point become linear and have dimension four. Importantly, we include the intra-step dynamics at uniformly-spaced intervals in the MPC formulation so that realistic workspace constraints on the robot's evolution can be imposed from step-to-step. The output of the low-dimensional MPC controller is directly implemented on a high-dimensional Cassie robot through the method of virtual constraints. In experiments, we validate the performance of our control strategy for the robot on a variety of surfaces with varied inclinations and textures.
翻译:本文展示了双足机器人在本地斜坡和摩擦锥形信息条件下在各种地形上高度灵活行走的轨迹控制器。 没有这些考虑, 不及时的影响可能导致机器人绊倒, 站脚上的不相干反应力量可能导致滑坡。 我们通过以新颖方式结合一个基于角动力线的模型和以虚拟约束方法执行的模拟预测控制脚部定位计划仪来应对这些挑战。 这一过程始于从一个CAY 3D双脚机器人的全面动态中抽取出一个精确的低维代表其质量动态中心, 以角动力为参数。 在一个片度平面平面平面地形假设中, 并消除机器人质量中心角动力的条件, 接触点的中间机器人动态成为线性, 并且具有四维。 重要的是, 我们把以统一空间间隔方式执行的步内动态控制器。 我们的机器人进化现实空间对机器人进化的进程限制可以从一步到一步步的轨道上强加。 我们的软度的机能控制, 我们的机能定位的输出, 通过一个高空基的轨道, 我们的校正的轨道, 我们的校正的校正的校正。