项目名称: 染料敏化太阳能电池单离子全固态聚合物电解质的设计及机理研究

项目编号: No.21273137

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王桂强

作者单位: 渤海大学

项目金额: 78万元

中文摘要: 提高全固态电解质的电导率和氧化还原对的传输速率、改善全固态电解质在二氧化钛多孔膜的渗透和界面接触是提高全固态染料敏化太阳能电池效率的关键。本项目设计烷基二咪唑与二碘代烷在二氧化钛多孔膜进行原位聚合制备新型单离子全固态聚合物电解质,并同时组装全固态染料敏化太阳能电池。电解质的单离子传导特性可有效提高氧化还原对的传输速率。通过调控电解质组成和各组份的结构,在电解质中同时形成快速进行Grotthuss键交换反应的多碘离子链和离子快速扩散的3D通道,从而大大提高全固态电解质的电导率。电解质的原位固化结合二氧化钛多孔膜厚度和微结构的调控可大大改善全固态电解质在二氧化钛多孔膜的渗透和界面接触。研究单离子全固态聚合物电解质的电导机制,研究电解质的组成、结构对其物理化学性能及所组装电池光电性能的影响,研究单离子全固态电解质/电极界面的电荷迁移机理和动力学过程,为进一步提高全固态电池的光电性能提供理论依据。

中文关键词: 全固态染料敏化太阳能电池;单离子电解质;电导率;光电性能;

英文摘要: The conductivity of electrolyte, the diffusion coefficient of redox couple and the wetting and pore filling of porous TiO2 film are key factors in determining the conversion efficiency of all-solid-state dye-sensitized solar cells. In this program, the mono-ion transport all-solid-state polymer electrolyte is prepared by using in situ polymerization of alkyl-bis(imidazole)s with alkyl-bis(iodine)s, and employed to fabricate all-solid-state dye-sensitized solar cells. The mono-ion transport feature is favorable to increase the diffusion rate of redox couple in all-solid-state electrolyte. The polyiodides chains for Grotthuss bond exchange and 3D channel for ionic diffusion can form simultaneously in the as-prepared electrolyte by adjusting the component of the electrolyte, and then the conductivity of the electrolyte could be increased greatly. The wetting and pores filling of the TiO2 film by the all-solid-state electrolyte could be greatly improved by using in situ solidification of electrolyte and regulating the thickness and pore structure of TiO2 film. The conductivity mechanism of mono-ion all-solid-state polymer electrolyte is studied. The dependence of the physical and chemical properties of electrolyte on the electrolyte components and the influence of the electrolyte components on the photovoltaic perfo

英文关键词: all-solid-state dye-sensitized solar cells;single-ion electrolyte;conductivity;photovoltaic performance;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
12+阅读 · 2021年9月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
12+阅读 · 2021年9月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员