We develop a flexible spline-based Bayesian hidden Markov model stochastic weather generator to statistically model daily precipitation over time by season at individual locations. The model naturally accounts for missing data (considered missing at random), avoiding potential sensitivity from systematic missingness patterns or from using arbitrary cutoffs to deal with missingness when computing metrics on daily precipitation data. The fitted model can then be used for inference about trends in arbitrary measures of precipitation behavior, either by multiple imputation of the missing data followed by frequentist analysis or by simulation from the Bayesian posterior predictive distribution. We show that the model fits the data well, including a variety of multi-day characteristics, indicating fidelity to the autocorrelation structure of the data. Using three stations from the western United States, we develop case studies in which we assess trends in various aspects of precipitation (such as dry spell length and precipitation intensity), finding only limited evidence of trends in certain seasons based on the use of Sen's slope as a nonparametric measure of trend. In future work, we plan to apply the method to the complete set of GHCN stations in selected regions to systematically assess the evidence for trends.


翻译:我们开发了一个灵活的、基于样板的贝叶西亚隐藏的马尔科夫模型随机天气生成器,以便按季节对各个地点的每日降水进行统计性模型。模型自然地记录了缺失数据(随机考虑缺失),避免了系统性缺失模式的潜在敏感度,或者在计算每日降水数据时使用任意截断处理缺失情况的方法。随后,可使用该适当模型来推断任意测量降水行为的趋势,或者对缺失数据进行多次估算,随后进行经常分析,或者对贝叶西亚后方预测分布进行模拟。我们显示该模型非常适合数据,包括多种多日特性,表明数据对自动调节结构的忠诚性。我们利用来自美国西部的三个站点,开展案例研究,评估降水的各个方面的趋势(如干法长度和降水强度),根据Sen的斜度作为非对趋势的计量,只在某些季节找到有限的趋势证据。我们计划对选定区域的全部GHCN站采用这种方法,以便系统评估趋势。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员