The modelling of small-scale processes is a major source of error in climate models, hindering the accuracy of low-cost models which must approximate such processes through parameterization. Red noise is essential to many operational parameterization schemes, helping model temporal correlations. We show how to build on the successes of red noise by combining the known benefits of stochasticity with machine learning. This is done using a physically-informed recurrent neural network within a probabilistic framework. Our model is competitive and often superior to both a bespoke baseline and an existing probabilistic machine learning approach (GAN) when applied to the Lorenz 96 atmospheric simulation. This is due to its superior ability to model temporal patterns compared to standard first-order autoregressive schemes. It also generalises to unseen scenarios. We evaluate across a number of metrics from the literature, and also discuss the benefits of using the probabilistic metric of hold-out likelihood.
翻译:小规模进程的建模是气候模型错误的一个主要来源,妨碍了低成本模型的准确性,而低成本模型必须通过参数化来接近这些过程。红噪对于许多操作参数化计划至关重要,有助于模拟时间相关性。我们通过将已知的随机性的好处与机器学习结合起来,展示出如何在红噪成功的基础上更进一步。这是在概率化框架内利用一个实际知情的经常性神经网络完成的。在应用Lorenz 96大气模拟时,我们的模型具有竞争力,而且往往优于一个标注基线和一种现有的概率化机器学习方法(GAN)。这是因为它比标准的一级自动递减计划更有能力模拟时间模式。它也概括了不可见的情景。我们从文献中评估了一些指标,并讨论了使用坚持可能性的概率性参数的好处。