We consider the problem of estimating volatility based on high-frequency data when the observed price process is a continuous It\^o semimartingale contaminated by microstructure noise. Assuming that the noise process is compatible across different sampling frequencies, we argue that it typically has a similar local behavior to fractional Brownian motion. For the resulting class of processes, which we call mixed semimartingales, we derive consistent estimators and asymptotic confidence intervals for the roughness parameter of the noise and the integrated price and noise volatilities, in all cases where these quantities are identifiable. Our model can explain key features of recent stock price data, most notably divergence rates in volatility signature plots that vary considerably over time and between assets.
翻译:当观察到的价格过程持续受到微结构噪音的污染时,我们考虑根据高频数据估计波动性的问题。假设噪音过程在不同采样频率之间是兼容的,我们争辩说,它通常具有与分数布朗运动相似的局部行为。对于由此产生的过程类别,我们称之为混合半通量,我们为噪音的粗糙参数以及综合价格和噪音的挥发性得出一致的估测器和零散信任间隔,无论这些数量在何种情况下都是可以识别的。我们的模型可以解释最近股票价格数据的关键特征,最明显的是变化性签字区的差异率,这些变化在时间上和资产之间有很大差异。