Key to effective generic, or "black-box", variational inference is the selection of an approximation to the target density that balances accuracy and calibration speed. Copula models are promising options, but calibration of the approximation can be slow for some choices. Smith et al. (2020) suggest using "implicit copula" models that are formed by element-wise transformation of the target parameters. We show here why these are a tractable and scalable choice, and propose adjustments to increase their accuracy. We also show how a sub-class of elliptical copulas have a generative representation that allows easy application of the re-parameterization trick and efficient first order optimization methods. We demonstrate the estimation methodology using two statistical models as examples. The first is a mixed effects logistic regression, and the second is a regularized correlation matrix. For the latter, standard Markov chain Monte Carlo estimation methods can be slow or difficult to implement, yet our proposed variational approach provides an effective and scalable estimator. We illustrate by estimating a regularized Gaussian copula model for income inequality in U.S. states between 1917 and 2018.
翻译:有效通用或“黑箱”的关键,变式推论是选择接近目标密度的近似值,以平衡精确度和校准速度。 Copula 模型是很有希望的选择,但近似校准对于某些选择来说可能比较缓慢。 Smith 等人(202020年)建议使用由目标参数元素转换构成的“隐性相交”模型。我们在这里说明为什么这些模型是一个可移动和可缩放的选择,并提议进行调整以提高其准确性。我们还表明,一个小类的椭圆可如何具有基因化的表示方式,使重新校准技巧和高效的第一顺序优化方法易于应用。我们用两种统计模型来展示估算方法,前者是后勤回归的混合效应,后者是常规化的关联矩阵。对于后者来说,标准的Markov链 Monte Carlo估算方法可能缓慢或难以实施,然而我们提议的变异方法提供了有效和可缩的估量。我们通过估算1917年至2018年美国各州收入不平等的常规高氏相交配模型来说明。