Key to effective generic, or "black-box", variational inference is the selection of an approximation to the target density that balances accuracy and calibration speed. Copula models are promising options, but calibration of the approximation can be slow for some choices. Smith et al. (2020) suggest using "implicit copula" models that are formed by element-wise transformation of the target parameters. We show here why these are a tractable and scalable choice, and propose adjustments to increase their accuracy. We also show how a sub-class of elliptical copulas have a generative representation that allows easy application of the re-parameterization trick and efficient first order optimization methods. We demonstrate the estimation methodology using two statistical models as examples. The first is a mixed effects logistic regression, and the second is a regularized correlation matrix. For the latter, standard Markov chain Monte Carlo estimation methods can be slow or difficult to implement, yet our proposed variational approach provides an effective and scalable estimator. We illustrate by estimating a regularized Gaussian copula model for income inequality in U.S. states between 1917 and 2018.


翻译:有效通用或“黑箱”的关键,变式推论是选择接近目标密度的近似值,以平衡精确度和校准速度。 Copula 模型是很有希望的选择,但近似校准对于某些选择来说可能比较缓慢。 Smith 等人(202020年)建议使用由目标参数元素转换构成的“隐性相交”模型。我们在这里说明为什么这些模型是一个可移动和可缩放的选择,并提议进行调整以提高其准确性。我们还表明,一个小类的椭圆可如何具有基因化的表示方式,使重新校准技巧和高效的第一顺序优化方法易于应用。我们用两种统计模型来展示估算方法,前者是后勤回归的混合效应,后者是常规化的关联矩阵。对于后者来说,标准的Markov链 Monte Carlo估算方法可能缓慢或难以实施,然而我们提议的变异方法提供了有效和可缩的估量。我们通过估算1917年至2018年美国各州收入不平等的常规高氏相交配模型来说明。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月16日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员